
Page 1

Object Recognition In Video Games

CS674

Tony Morelli

Date Due: 12/19/2005

Date Handed In: 12/19/2005

Page 2

Abstract: Recognizing objects in video games is the basis for all video game artificial

intelligence. Most video game AI determines what is on the screen by the code itself. To

me this presents an unfair advantage as the computer has knowledge about the states of

other entities that may not be available to the average player. What is presented in this

paper is an approach to object recognition in video games where the recognition device

is not connected to the video game in any way. This will simulate a real human watching

the television screen.

Page 3

Traditional video game AI is embedded

in the game itself. This allows for the AI

to have access to a lot more information

about the current state of the game.

With all of this knowledge accessible,

the AI can be tweaked to be near perfect.

Although this is a clever way of doing

things, it is not how a real player acts

when he plays the game. A real player

has no knowledge of exact positions of

enemies and obstacles. A real player

does not immediately know whether an

object is an enemy, or an obstacle, or

some kind of positive bonus. This paper

will show how to determine the current

state of the game without any invasion

into the video game whatsoever. The

game source code will not be modified

in any way, and the Object Recognition

System (ORS) will be responsible for

watching the television screen and for

controlling the game using the video

game system’s controller. First, the

concept is presented using successive

screen shots from a Nintendo

Entertainment System emulator, and

then the theory is applied in real time

using a video camera and a XBOX video

game system.

Traditional Artificial Intelligence used in

video games used knowledge about the

state of the game environment that was

not available to the player. For example,

in the Super Mario Bros game there

exists a certain level where an enemy

appears in the cloud. The enemy chases

your player around the screen trying to

throw objects at it. This enemy knows

the coordinates of the controllable player

because of the state of the system that

exists in the memory of the running

program, not because it recognized on

the screen what character the user was

controlling. To recognize enemies and

objects using this methodology would be

simple, provided the source code was

Page 4

available. The situation being

investigated here is a situation where the

source code is not available, and the

object recognition is taking place outside

of the program itself. With this being

the case, using traditional AI techniques

will not work.

Attempting to recognize objects without

having access to runtime variables

seemed more like a robotics question

than an AI question. Lots of research

has been done in robotics vision

analysis, however they all seem to be too

specific. That is every object they

encounter must be identified and

categorized as a specific entity. They

examine all entities using 3d models and

transformations trying to identify what

class they belong in. The examples used

here could use some more details

associated with them outside of their

direction of travel, but the amount of

details that are being considered in

robotics vision research seem to be

overkill. A deer in the woods is a very

good example of what is trying to be

accomplished here. A deer in the woods

is afraid of anything that is out of the

normal. Whether it be a human, a dog,

or a snake, when a noise is made the

deer is spooked and runs away. The

deer should not be scared of most

humans, or dogs, however its survival

instinct allows it to escape any

potentially dangerous situation. The

ORS takes those natural behaviors into

account while recognizing objects.

Anything out of the ordinary should be

considered an obstacle.

The approach used in the ORS is as

follows. In the proof of concept, images

were taken as consecutive screenshots

from an emulation of the game Super

Mario Bros running on a Linux based

PC. The screen shots were saved off as

a P6 pgm file. A P6 pgm file is a simple

Page 5

graphic format where each pixel is

represented as 3 bytes (1 byte for each of

the Red, Green, and Blue color values

for that particular pixel). Two

consecutive images were subtracted

from each other. That is, each

corresponding RGB value in the second

image was subtracted from the first

image. Once this subtraction is

complete, you are left with an array of

pixels the same size as the original

images that highlights the changing

pixels. Any pixel in the subtracted

image that is a 0 represents pixels that

were identical between the first picture

and the second, and anything other than

a 0 represents a change in pixels, or

motion. These changing pixels were

grouped together into regions and

rectangles were placed around them.

This keeps individual objects and their

locations easy to maintain.

Figure 1 -- Frame 01

Figure 2 -- Frame 02

Page 6

Figure 3 -- Frame 02 – Frame 01

Figure 4 -- Identified regions overlaid

on current frame

The resulting subtracted image easily

shows the regions that have changed

between the two grabbed frames. What

it does not tell you is what direction the

region is moving. For example, when

the images are subtracted, you are left

with a region representing where the

object was in frame one, and a region

where the object is in frame two, but it is

very difficult to know which region

represents frame one and which

represents frame two. In order to over

come this problem, a third frame was

taken into account. This third frame was

subtracted from the second frame

leaving another images with regions

identifying motion between the two

frames. At this point we have 2 images

that represent motion, one between the

first and the second frame, and one

between the second and the third frame.

The regions are differentiated by their

approximate location and size. A region

that is the same between the 2 subtracted

images identifies where the object is

located when the second frame was

taken. If the region is moving from right

Page 7

to left in the subtracted images, the

object is moving from right to left. If the

region is moving from left to right, the

object is moving from left to right. This

is a very simple way of looking at

things, but it does its job of identifying

the direction of objects over a series of

frames.

Now that the direction of objects is

known, the identification of what object

represents an enemy and what object

represents the character being controlled

begins. To make this determination,

how a human plays video games was

analyzed. When a human is playing a

video game, he knows that when he

pushes the directional pad to the right he

expects his character to move to the right

and all enemies and obstacles to come

towards him. This is a strategy used in

2D side scrollers such as the Super

Mario Bros game used in this

experiment. Using that knowledge, it

was obvious that the ORS will need that

information to correctly identify enemies

and obstacles. This is how humans play

the game, so giving this information to

the system seemed necessary. The

direction parameter was added, and

using that information the ORS

identified the controllable character as

well as the obstacles and enemies. One

issue to keep in mind is that the ORS is

always one frame behind the current

frame. If the system is able to process

the images real time this would mean the

processing is taking place 1/24
th
 of a

second after it needs to be. This should

not be an issue.

The ORS was able to identify the

controllable character from the obstacles

and enemies. It also misidentified some

items. For example, a block with a

question mark is actually a good thing,

but since it is moving the opposite

direction as the controllable character it

Page 8

is marked as an object to avoid. Also

clouds and trees, which in this game are

just a part of the background are marked

as objects to avoid. This is not

considered a failure as the goal of this

project was to identify objects in the

video game. Some simple AI can be

added to identify what is in those

objects, but for this example all objects

out side of the controllable character are

considered objects that need to be

avoided.

One issue that could be considered a

failure is the time required to do the

analysis of three consecutive images.

This averaged 1.2 seconds on the test

computer. 1.2 seconds is a lot of time,

and is too much time to ever have this

accomplished in real time. Two areas of

time consumption were identified: The

reading/writing of the graphic files

from/to the disk, and the algorithm of

subtracting the pixels. The subtracting

of the pixels has to be done. Each pixel

must be looked at to identify motion. To

make it faster, it was moved to a faster

computer. As far as speeding up the

disk access the determination was made

that pulling frames out of memory would

be faster than getting them off the disk.

To achieve this, the ORS was modified

to have direct access to a live camera

feed pointed at a television. Outside of

making it faster to read images, it also

achieved the goal of having a completely

independent system to recognize objects.

The user would not have to manually

save images, the ORS would read them

directly from the stream. At this point

the software (which was previously

written in C++ and run on Linux) was

ported to VB.NET and run on a faster

computer system running Windows XP.

Page 9

Figure 5 -- Screenshot of VB.NET App

Now having the application analyzing

images directly from the live video

stream increased the speed, however

another aspect was lost in the

conversion. Now the system had no

knowledge of which direction the

character was going. To overcome this,

another component was added to ORS.

The ORS was given the ability to control

the video game itself. The Super Mario

Bros game emulation was moved to run

on an emulator running on an XBOX

video game console. The XBOX

controller was wired directly into the

computer’s parallel port, and the ORS

would control button presses on the

controller. That way when the system

moved right, it would know it was

moving right while processing the

images.

Figure 6 – Modified XBOX Controller

Figure 7 – Parallel Port/XBOX

Controller Interface

The image processing algorithm needed

to be modified. Doing a simple

subtraction would not work any more.

This is because the pixels in the lave

Page 10

feed were not perfect. That is a green

pixel would not show up as 100% green

anymore due to reflections on the

television screen, and fluctuating output

from the television itself. Simply

subtracting consecutive images resulted

in just about every pixel having some

degree of difference. A ‘fudge factor’

was added to determine when a pixel

had changed and when it had simply

looked different through the camera. All

pixels that had an absolute change of

more than 100 were determined to be a

pixel that actually changed. The

absolute change was calculated as

follows. The absolute value of the

difference of each of the Red, Green,

and Blue components was added

together to give the absolute change.

The speed of the processing went from

1.2 seconds to .75 seconds. However,

this was not enough of an improvement

to provide real time analysis of the

images. Real time analysis was

attempted, but the processing was too

lagged, and the obstacle avoidance

would kick in too late causing the

character to be trapped by an enemy.

The algorithm was working, however,

and increasing the processing power of

the computer running the ORS will help

this substantially. The experiments were

run on a Pentium M1.5 GHZ computer.

Running this on a space age top of the

line state of the art computer could

possible bring down the computing

times to allow this to happen real time.

The other modification that might need

to be made is instead of looking at every

pixel, maybe try looking at every other

pixel. Every other pixel should give

enough resolution to identify regions of

motion.

Overall, the algorithm discussed here for

an independent object recognition

system should be considered a success.

Page 11

The algorithm correctly identified

objects in the path of the character being

controlled. The regions are identified by

their coordinates, and could easily have

more attributes added such as colors.

With this information, the scenario

presents itself nicely for an AI problem

to determine which objects are enemies,

which are good for the character, and

which can be ignored as they are part of

the background. Having the system

independently control the video game

also adds to the main feature of this

approach, which is being completely

independent of the game being played.

Page 12

Sources

H. Kwon, Y. Yoon, J. B. Park and A. C. Kak, "Person Tracking with a Mobile Robot

using Two Uncalibrated Independently Moving Cameras," to appear in Proceedings

of the 2005 IEEE International Conference on Robotics and Automation.

Guilherme DeSouza and A. C. Kak, "Vision for Mobile Robot Navigation: A
Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
237-267, February 2002.

A. C. Kak and A. Kosaka, "Multisensor Fusion for Sensory Intelligence in
Robotics," Proceedings of the Workshop on the Foundations of
Information/Decision Fusion and Applications to Engineering Problems,"
(INVITED TALK) Sponsored jointly by Department of Energy, Office of Naval
Research, and National Science Foundation, August 7-9, 1996, Washington DC.

A description of some experiments we have done with the Quakebot to test how
human it behaves and whether we can modify some simple parameters to
change skill levels: Creating Human-like Synthetic Characters with Multiple Skill
Levels: A Case Study using the Soar Quakebot. This appeared in the AAAI
2000 Fall Symposium Series: Simulating Human Agents, November 2000.

Magerko, B. "A Proposal for an Interactive Drama Architecture", AAAI 2002
Spring
Symposium Series: Artificial Intelligence and Interactive Entertainment, March
2002.

Comment [1]: <!--[endif]-->

