
Game Teleporter
By Tony Morelli

12/15/2006 morelli@cs.unr.edu

Abstract

Developing software for multiple
platforms is a very difficult and tedious
task. It is also very difficult for someone
who does not know any programming
language to create games to demonstrate
a talent for game creation. What is
proposed here is a solution to both of
these issues. A software tool, written
from scratch, is used to convert a certain
input file format to a different output file
format. A plug-in architecture is used in
such a way that a programmer can
generate either an input plug-in or an
output plug-in which is used in the
application. This paper will show why
this is a good way to create games and
demonstrate how it works with two input
plug-ins, Adobe Photoshop and
Macromedia Flash, and one output
plug-in, Playstation Portable.

Introduction
The simple creation and

conversion of a game is important as it is
a common problem in the development
of games. Although not insurmountable,
the obstacle of converting games is a
very time consuming process. Saving
time also saves money and with the
budget of video games constantly
increasing a tool such as the Game
Teleporter will be extremely accepted
within the industry.

This project is also important
because of the educational aspects. The
finished plug-ins can be used in early

programming courses as an introduction
to programming. Advanced courses can
be created that will look at the plug-ins
more in depth and allow students to
modify existing plug-ins and create new
plug-ins. Students will have already
been familiar with the tool and looking
at it from how it was coded will help
them understand the software better as
they already know the functionality.
Jumping into code is always harder
when the complete picture is not known.
Knowing exactly how an application
works in all situations makes it a lot
easier to go through the code and figure
out why it works that way. If this tool is
used throughout a student’s educational
career, the student will be much better
prepared for real world programming
projects.

The concept of this project has
had a lot of thought put into it, and is
extremely simple on the surface, and
extremely complex underneath.
Developing this project involved lots of
reverse engineering of different file
formats. Several different file formats
were investigated for input plug-in
formats, and even more were looked at
for output plug-ins. Outside of reverse
engineering some formats, others were
learned by looking through file
specifications released by open source
groups and by the manufacturers
themselves. This project demonstrates
the ability to create a needed application
and to write the code for the application
using industry standards when available
and inventing new ones when the
existing standards are insufficient.

This project looks extremely
basic on the surface. Just simply take
one file format and convert to the next.
The complexity shows up when writing
plug-ins for complex file formats. The
file format must be known completely
and all functions and tags within certain
file format must be decoded correctly.
Also all the intricacies of the target
platform of the output plug-in must also
be known. The Nintendo DS has
different requirements as far as
resolution of the screen(s), supported
picture types, and audio formats than the
Playstation Portable. These differences
need to be taken into consideration when
creating an output plug-in.

The inherent problems of this
project are visible when something else
is needed to be represented within the
core of the Game Teleporter in order to
support a new feature. For example, a
picture is read from the input plug-in and
stored in an intermediate format before
the output plug-in reads it and does
whatever conversion it likes. In this
example each of the input plug-in, the
core, and the output plug-in are all aware
of the temporary image and what
formats it should be in. If, for example,
the input plug-in has a new feature such
as a 3-D surface, the core would need to
be modified to support the surface in
order to properly pass it on to the output
plug-in which would also need to know
what to do with this object. This is not
unexpected, and must be supported and
considered as new file formats and file
types will always be on the horizon.

Problem Formation
The object of this project is to

simply take one target format of a
finished project and automatically output
a finished project of a different target
format. This will make it easier for

people to develop games. Although it
does not set a standard for how all games
need to be developed it sets up the
framework for all varieties of possible
development types. It also allows for
flexible integration of new features as
well as new input and output types of
files. The Game Teleporter is organized
in such a way that integrating features is
a relatively easy task, although the actual
coding of the features may be difficult.
The difference here is the actual
functionality of the new feature and the
integration of the new feature. Features
of the future cannot be known, but this
project should allow for easy integration
of whatever they may be.

An in depth look at the
functionality of the Adobe Photoshop
file format is a large part of this initial
demonstration of how the project
functions. Also a part of this is how
software for the Playstation Portable is
built and run. These are taken as an
example and not as a complete guide.
As will be shown throughout this paper,
the Photoshop file format contains a very
large set of commands, and for this
project, only the necessary functions are
implemented in the input plug-in. The
same goes for the Playstation Portable
output plug-in. The available commands
and features of the Playstation Portable
are very large. This plug-in simply
generates the necessary source code to
correctly convert the sample Photoshop
(PSD) file. Again, the object of this
project is to demonstrate how the Game
Teleporter should function, not a
complete plug-in for all Photoshop
features, or all Playstation Portable
features. A list of supported features is
documented within this paper.

Background

Current methods of converting
games from one platform to another can
be a very long and drawn out process.
Currently game developers must take the
graphics, sounds, and game description
and create the game. If the game has
been created for the PC, and is to be run
on the Playstation Portable, the game is
basically started from the ground up
again. This is a large waste of time and
with the cost of game development
rising, any reduction in the development
process is a great asset. And being able
to get the game out on multiple
platforms at the same time allows the
final product to reach a far greater
audience quicker and more efficiently.

Most attempts at doing this have
succeeded to some degree. One of the
best examples is Java. Java is a platform
independent language. The compiled
code runs through an interpreter, called
the Java Virtual Machine, which is
platform dependent. If the Java program
is desired to be run on a different
platform, the interpreter is simply
installed on the target. The same
program can be run on Microsoft
Windows and on Linux. This works out
very well, but it has two side effects.
First of all, the code is not as efficient as
it could be as the interpreter is taking the
code and changing it into code that the
OS will understand run time. Instead of
just feeding the code into the CPU, the
interpreter must convert the Java
program into instructions that processor
can understand, then running the
program through the CPU. Another
disadvantage of this approach is that a
Java interpreter is required on the target
machine. If you wish to run your Java
program on a platform that is currently
unsupported, you must make a Java
interpreter to run on that platform. This
would require a lot of work, and could

be an acceptable solution, however some
platforms, especially embedded
platforms, do not allow for the overhead
of the Java Virtual Machine. It would be
very difficult to port a version of the
Java Virtual Machine that would run at
an acceptable rate on the Gameboy
Advance.

Another attempt at a platform
independent language is Flash, originally
developed by Macromedia. To run Flash
files, a platform specific flash player is
required. This has the same drawbacks
as the Sun Java Virtual Machine, with
one difference. Adobe now owns the
rights to Flash, and they require all Flash
players to be released by them. So if the
target platform does not have a Flash
player written for it, a request must be
made to Adobe to create a player for that
target platform. This would most likely
take a lot of time and money to get
completed.

The best attempt at creating a
cross platform file format is web
browsers. All html files are meant to be
read on all platforms that have a web
browser written for it. This works really
well, and many platforms are supported.
However, although web pages are
interactive, they are not the best suited
for games. Games require immediate
reaction when buttons are pressed, and
the loading of web pages is too slow to
be run real time. Also, web pages use
hyper links to move from one page to the
next and the use of arrow keys to make
movements is not directly supported.

My Approach
The approach described here

creates platform independent native
machine code. The Game Teleporter
will convert from one file format to
another format without the need for a
runtime interpreter. This will allow the

program to run as fast as possible on the
target platform.

The idea for this came from a
different project I completed in the past.
In this project, the first cross platform
multiplayer game was created for the
most recent generation of handheld
gaming consoles. In that project the
simple game of Tic Tac Toe was
implemented in both the Playstation
Portable and in the Nintendo DS.
Players were allowed to play a game of
Tic Tac Toe against a person playing on
either the same handheld, or on the
opposite handheld. The code for each
was written in C, and a lot of the code
was re-used unchanged. A compiler for
each target machine was run on the code
generating a binary image that could be
run natively on the respective machine.
The code segments that were specific to
each console were specific to the same
elements. For example, the method of
drawing an X or an O on the screen was
different between platforms. The
initialization of the screen was different
on each platform, and the methods of
printing characters to the screen were
different. Both platforms needed to print
characters to the screen at the same time,
both platforms needed to initialize the
screen at the same point in the code,
however the actual function calls were
different. This left an opening for
another layer of abstraction. An
intermediate higher level code could be
used above the C layer to generate the
code, and then another layer in the
compilation process could be used to
generate the specific function call. For
example, the function InitializeScreen()
is needed in both the Nintendo DS and
the Playstation Portable. The above
generic function call is made, and is then
converted to the known specific set of
function calls for each platform. This is

where the idea for this project was born,
and it has been developed as described
in this paper.

An input file is submitted to the
application with the desired output
format specified. In this case, an input
file can be either a Adobe Photoshop file
(*.psd), or a Flash file (*.swf). The
desired output must be a Playstation
Portable as that is the only supported
output plug-in. The application is then
run and outputs source code that can be
compiled in the psp gnu tool chain. The
Game Teleporter is designed to run on
Windows XP, although the code is
written in C++ for easy porting to other
operating systems.

Installation of Necessary Components
To test the software, several

components must be installed on the
development station. First of all, in
order to test the different input plug-ins,
a computer must be installed with Adobe
Photoshop and Macromedia Flash.
These utilities are necessary to generate
the input files. The current code has
many limitations and the capabilities of
the plug-ins are described later in this
document.

To test the output plug-in, a
Playstation Portable development
environment must be installed. The
process for installing the development
environment is somewhat tedious, but if
the following directions are followed
correctly, there should be no issues
getting up and running.

The first step in installing the
Playstation Portable development
environment is to install cygwin.
Cygwin is available at
http://www.cygwin.com. Cygwin is a
Linux-like environment for windows
which will give a user the appearance of
working within the linux environment.

http://www.cygwin.com/

The Playstation Portable compiler runs
in this environment so it is necessary to
first install cygwin and make sure it is
functioning correctly. To install cygwin,
click on the install icon on the web page
indicated earlier. This will begin the
installation process. The default
selections are sufficient until the setup
reaches the Select Packages stage. In
this stage, select whatever packages are
of interest. If this is unfamiliar territory,
be sure to select everything under the
devel category. The devel territory
contains the gcc compiler which will be
used later. It is also a good idea to
install a text editor of choice under
Editors at this time. VI is a great editor
and was the editor of choice for this
project. Specific packages that are
needed include, autoconf2.1, automake
1.9, gcc, gcc-g++, make, diff, patchutils,
subversion, wget. Do not worry about
selecting all the correct packages, if
something is missing it will alert the user
that an update is needed. To update,
simply go back to the website and click
on the update icon. It will determine
what is installed on the development
machine, and changes can be made via
the Select Packages screen. If all of this
cygwin business is unfamiliar, or is
seemingly complicated, have no fear.
This is all just used to create files for the
PSP output plug-in. The plug-in will do
most of the work. This is all just up
front installation that is required to be
done only once. The default selections
are fine for the rest of the installation.
Just sit back and let it do its thing. This
part can take awhile depending on the
speed of the internet connection of the
development machine.

The second step in installing the
Playstation Portable development
environment is to install the PSP Tool
Chain. The PSP Tool Chain contains

libraries necessary to build images
suitable for running on the Playstation
Portable. The tool chain is avail at
www.sourceforge.net. Simply search for
psp tool chain and download it to within
your home directory in cygwin. For
example, if cygwin was installed to
C:\cygwin, the home directory resides in
c:\cygwin\home\<username>. Once
downloaded, run cygwin and type ls. A
listing should appear and should contain
the PSPTool Chain. My directory
contains a psptoolchain-20060120.tar.gz.
Untar this file using the command, tar –
zxvf psptoolchain-20060120.tar.gz. This
will create a directory called
psptoolchain-20060120. Change
directories into this newly created one by
the following: cd psptoolchain-
20060120. Then install the toolchain by
typing, ./toolchain.sh. This will
complete the installation of the required
tools for the Playstation Portable output
plug-in.

The ability to run unsigned code
on the Psp is slightly complicated and
also slightly understood. Sony designed
the Psp to run only software signed by
official developers. Since we will be
writing software to be run on a Psp, we
either need to become official
developers, or find some kind of hole
that Sony has left for us. My preferred
method is known as the kxploit method.
This method only works on version 1.5
firware Psps. For other versions of Psp
Firmware there are other methods of
booting unsigned homebrew code
including the buffer overflow or the
Grand Theft Auto exploit. But a little
more in depth about how the chosen
method of the kxploit works. First off
there are 2 directories created with the
target name. If the target name is
defined as TARGET, two directories are
created, one named TARGET and

http://www.sourceforge.net/

another named TARGET%. The real
unsigned code lives inside of TARGET,
and the contents of TARGET% contain
an actual signed piece of code released
by Sony for other purposes. The
accidental feature of firmware v1.5 is
that the section of code which checks the
validity of the file about to be ran does
not support the percent sign, so it is
dropped. The code wants to check the
validity of TARGET%, but ends up
checking the validity of the contents of
TARGET (which are valid). The
function returns the piece of software
has been determined to be a valid Sony
software, and the execution piece
executes the binary file inside of
TARGET%.

Another required installed
component is ImageMagick
(http://www.imagemagick.org).
ImageMagick is an open source freely
distributed graphics software package
which is accessed through a command
prompt. Being accessible through the
command prompt is important as easy
conversions can be done within the
application, instead of invoking a GUI
and requiring user interaction. In this
specific project, ImageMagick is used to
export individual layers of a PSD file
into separate PNG files.

Description

A normal development process
usually starts off with an artist creating
graphic images, a sound engineer
creating the sounds, and finally a
programmer putting everything together
to create a game that the public likes to
play. If the game is going to be released

on multiple platforms, for example the
Playstation Portable and the Nintendo
DS, the programmer will start the project
over from scratch using slightly
modified graphics and sound files.
Although this process is straight
forward, it can be time consuming and
certain aspects can take time. Using this
application, all of the standard
conversions are handled internally by the
conversion utility, and is transparent to
the developer and the audio and graphics
teams. If the output plug-in is properly
written, all of this is taken care of
automatically. The use of quick code
conversion has been demonstrated in a
project where a simple Tic Tac Toe game
was created which allowed cross
platform multiplayer games to be played
over the internet between a player on a
PC, Playstation Portable, or Nintendo
DS. C/C++ compilers do a lot of the
work as the code remains portable,
however the code can be broken down
into even more basic building blocks to
allow for the porting of the code. Also,
there currently is no common sound file
formats across all platforms. This tool
will allow for that.

Another reason for this tool is to
allow non programmers to enter the
industry by showing off their skills.
People who can draw might have an idea
for a game to create, however it is very
hard to put that idea into existence as
they do not know how to program.
Using this tool with correctly
implemented plug-ins will allow artists
to create a game and show the game
running on real hardware to perspective
employers. Also, this tool can be used
for a introductory course in game
development as the students can create
games without knowing the in depth
knowledge of how the coding process

http://www.imagemagick.org/

works. Once the students are very
interested in the programming aspect,
they can have the opportunity to modify
plug-ins or create new plug-ins as new
standards and technologies come with
time.

In this project, the input plug-ins
demonstrated are Adobe Photoshop and
Macromedia Flash. These are two very
well known programs used by artists in
the gaming industry. Using these tools
as a basis for demonstrating the
functionality of the Teleporter is
important because professional artists
are very comfortable with these software
packages. Instead of having to relearn a
completely new software package, this
utility will let the artists use the tools he
wishes to use as long as the appropriate
input plug-in exists. The conversion
process will notify the artists that the
picture drawn either conforms or does
not conform to the specifications of the
output plug-in. For example, the proper
resolution of the Playstation Portable is
480x272 pixels. A correctly coded
Playstation Portable output plug-in will
have a check for this value. If the
original Flash or Photoshop file is not
the correct size, the output plug-in
should either abort the conversion
process, or automatically scale all files
appropriately.

The project was originally started
using Adobe Photoshop as the only input
plug-in. As this project focuses mainly
on games, the Photoshop format quickly
became too basic. Games require
interaction and dynamic environments
that are difficult to create within a
Photoshop document. Simple programs
were able to be created using this as the
input plug-in, however to create a fun
game a different input plug-in was
needed. The second plug-in created was

the Macromedia Flash plug-in. This
contained the necessary elements to
actually be used as an input plug-in for a
complex game. This also created an
issue as the code for the input plug-in
itself became extremely complex. This
is acceptable as the complex code is
isolated to the Flash Input Plug-in code,
and when properly functioning, this code
is rarely modified or seen, simply
executed.

Input Plug-ins
As described earlier, input plug-ins must
support converting any files, or set of
files into an intermediate set of files.
These files are grouped into two areas,
source code and resources. The source
code contains commands in a simple
language similar to the C programming
language. Currently, the only resources
supported are images stored in the
Portable Network Graphics (Png)
format. Other resources that can be
added at a later date include sounds, 3
Dimensional Graphics, and other data
files.

The Photoshop input plug-in is
designed to create a slide show of
images that are contained within a
Photoshop file. Adobe Photoshop has
support for multiple layers. A layer is
similar to a page in a notebook made up
of transparent paper. A drawing exists
on each page of the note book, and when
laid on top of each other it is possible to
see all images at once. That is what is
seen when the Photoshop document is
first opened. The Photoshop Plug-in’s
function is to take the different layers
(pages in the notebook), break them out
into separate images, and then generate
code to display them one at a time
keeping the location of the images the

same as where they were in the original
Photoshop file.

To achieve this goal, an open
source tool was utilized. Imagemagick
is an open sourced and freely distributed
graphics package which contains several
utilities to manipulate graphics.
Although it is very possible to write
complete software solutions not using
open source products, they are very
useful and it avoids re-inventing the
wheel for known problems. In the first
stage of the Psd conversion process, the
Imagemagick utility convert is ran on the
Psd file. When convert is run on a psd
file, the output of the command is one
Png file for every layer contained within
the file. This is a very important step to
have automatically taken care of by an
outside utility, however the convert
utility is missing two important pieces of
information. It is missing the location of
the image within the layer, and it is also
missing the name of the layer. The
position within the file is needed to
properly display the image, and the layer
name is needed for potential key word
usage later if the psd plug-in is desired to
do more than a simple slide show.

To obtain the two missing pieces
of data, the position of each layer, and
the layer name, the Game Teleporter was
written to get these pieces directly out of
the Psd file itself. The Psd plug-in is a
stripped down version of the Adobe
Photoshop 6.0 File Formats
Specification. It is only concerned with
the name of each layer and the location
of each layer. Nothing more. The plug-
in will display all sorts of information
about the file and about each layer,
however that information is simply
displayed and not saved for later use.
The plug-in can be modified in such a
way that available and not currently
stored data can be stored, but that is not

necessary for the purpose of this plug-in.
The code was written to follow the spec
and upon completion of processing all
data within the Psd file, the plug-in is
aware of layer names, and the
corresponding bounds which include the
coordinates of the Top Left corner, and
the Bottom Right corner of the graphic
contained on each layer.

Knowing the layer names, the
plug-in then makes modifications to the
Png files created by the convert program
earlier. The convert program knows
nothing about layer names, so it names
the files according to the layer number.
So what is output is a number followed
by .png (i.e. 1.png, 2.png, 3.png, etc…).
This is somewhat not useful, but
fortunately the layers are processed in
the same order by the Game Teleporter.
So the psd plug-in can simply rename
each file based on an index into an array
of filenames generate by the psd plug-in
when it read the file earlier. At this
point, the input plug-in has created the
resources necessary for the intermediate
stage and copies them to an intermediate
directory. The final step of the input
plug-in stage is to generate the source
code needed for an output plug-in to
create the desired output.

The Psd input plug-in creates two
source code files. The first file created
is named Pictures.h and contains a
known structure for pictures. The
information stored within that file
contains the path name of the image
resources, and their associated bounds. A
sample Pictures.h file is shown below:

/*****************************/
static struct Picture picts[] = {
 {"Green_Box.png",1,1,34,45},
 {"Red_Box.png",0,432,35,479},
 {"Blue_Box.png",224,0,265,51},
 {"Yellow_Box.png",226,427,270,478}

 };
#define TOTAL_PICTURES 4
/*****************************/

Figure 1: Pictures.h

The above code is generated runtime by
the Psd Plug-in and includes all relevant
info including the total number of
pictures.

The second piece of code
generated by the Psd Input Plug-in is the
code that describes the necessity for
displaying the slide show. This code is
formatted in a C like syntax in order for
ease of conversion for most out put plug-
ins. Most platforms support some kind
of C compiler, so that is why that format
was chosen. The main code piece not
only contains commands, but it also
contains XML markers designating
different sections of the code. The xml
tags generate by the Psd Plug-in include,
Includes, Declarations, and Mainloop.
The includes section is designed to
describe any external files created by the
plug-in, which in this case is Pictures.h.
The Declarations section is much like a
declaration section in a C programming
where it outlines what variables are
about to be used. The mainloop is a
section which contains the actual
commands to generate the desired
output. A sample output of the Psd Plug-
in code generation is shown below:

/*******************************/
<INCLUDES>
#include "Pictures.h"
</INCLUDES>
<DECLARATIONS>
int picIndex = 0;
InputButton button;
</DECLARATIONS>
<MAINLOOP>
 GetInput();
 if (button & RIGHT)

 {
 ClearScreen();
 picIndex++;
 if (picIndex >= TOTAL_PICTURES)
 {
 picIndex = 0;
 }
 DisplayImage(picts[picIndex]);
 }
 if (button & LEFT)
 {
 ClearScreen();
 picIndex--;
 if (picIndex < 0)
 {
 picIndex = TOTAL_PICTURES-1;
 }
 DisplayImage(picts[picIndex]);
 }
</MAINLOOP>
/*******************************/
Figure 2: Intermediate Code Sample

A quick run through of the code shows
that our main loop calls a function
GetInput which is then assumed to place
whatever buttons are pressed in a
variable labeled button. Then based on
what button is pressed (either right or
left), the screen is cleared and the next
image is displayed. This keeps going on
forever. This is a pretty simple state
machine, and it will be shown later how
this simple code is turned into
Playstation Portable Code.

Output Plug-ins
Output plug-ins is designed to

utilize the code and resources generated
by the input plug-in to create a desired
result. The plug-in discussed here is a
Playstation Portable plug-in, but the
concepts discussed here can be used to
create plug-ins for different platforms.

The Psp Output Plug-in begins
with a skeleton set of files which act as a

starting point for a Psp Project. These
are grouped into two categories,
Necessary Files, and Modifiable files.
The Necessary Files are files necessary
to build a Psp Executable, and are not
able to be modified by the Psp plug-in.
These files are simply copied into every
project directory. The other set of files,
the Modifiable Files, are files necessary
to build a Psp Binary, however these
need to be modified based on the output
of the input plug-in.

The two files being modified are
Makefile, and main.c. The changes to
Makefile are extremely basic. The
Makefile contains two identifiers for
each Psp Project, Target and Title. The
Target defines the executable name and
shall not contain any spaces. The Title is
what appears as the title on the
Playstation Portable Game Selection
Screen and may contain spaces. Both of
these configuration options are entered
on the command line when the
application is started and inserted into
the file when the Psp Output Plug-in is
ran.

The second and most
complicated modifiable file in the Psp
output plug-in is main.c. The skeleton
main.c file contains all the include files,
functions, and definitions required for all
Psp applications. It also includes
keywords such that the Psp Output Plug-
in can insert the necessary code at the
correct places within the file. The file
contains XML tags for Includes,
Declarations, and the MainLoop. Since
this plug-in is creating an application to
be built by a C compiler, the plug-in can
simply copy in all includes defined in
the intermediate code file. They will be
a direct drop in. The same goes for the
declarations with one exception. The
variables are declared in the same
fashion as in the intermediate code,

however the Psp Output Plug-in must
maintain an internal list of variables for
use which will be described later in this
document. The variable types supported
by this plug-in are an Integer and a
Button type.

After the declarations, the
MainLoop Tag is encountered and the
guts of the code are added from the
intermediate code generated by the input
plug-in. The Psp plug-in reads through
the intermediate code and makes
modifications as necessary. For
example, any time the intermediate code
makes a call to GetInput(), the Psp plug-
in makes a call to ProcessInputs, and
stores the results into its variable that has
been declared as a button. In this case,
the variable name is button. Another
substitution deals with the use of the
variable. Whenever the intermediate
code checks the value of button, the Psp
output plug-in generates code looking at
the value of button.buttons as that is the
naming convention for buttons in the Psp
world. The intermediate code generated
by the input plug-in as shown above is
translated into the following code which
is understood by the Playstation Portable
compiler.

/***************************/
 button = ProcessInputs();
 if (button.Buttons & RIGHT)
 {
 ClearCurrentScreen();
 picIndex++;
 if (picIndex >= TOTAL_PICTURES)
 {
 picIndex = 0;
 }
 DisplayImage(picts[picIndex]);
 }
 if (button.Buttons & LEFT)
 {

 ClearCurrentScreen();
 picIndex--;
 if (picIndex < 0)
 {
 picIndex = TOTAL_PICTURES-1;
 }
 DisplayImage(picts[picIndex]);
 }
/***************************/

Figure 3: Psp Output Plugin
Generated Code

As shown above the code translates
pretty easily into Psp native code, but
also illustrates why a C compiler cannot
be relied upon to do all conversions.

With all the code in place, the
plug-in then copies all resources into the
destination directory. This sets the game
up to be built. One last modification
needs to be made prior to building the
game. A build script is generated which
contains the name and directory of
where the source files will be placed. A
batch file is then run which will enter the
build environment and build the
Playstation Portable Binary image.

When the newly created
application is run on the actual
hardware, a slideshow is presented to the
user. The slideshow cycles through all
the layers originally drawn within the
Photoshop file and displays them in their
original location. This simple example
illustrates the power of this tool. From a
Psd file, to running on real hardware in
less than 1 minute is something not shy
of amazing.

This software was designed to be
run completely from the command line
as it will enable people to use the utility
in scripts that will automatically
generate a desired output. This,
however, is not the best approach for
people who are using this tool as a
development kit for non programmers.

These people may be intimidated by the
requirement of using a command
prompt. A front end for the command
prompt, GT Front End, was created.
This utility allows the user to input all
required command line options, such as
the input and output files, and the output
file names into a Graphical user
Interface (GUI) that is in a windowed
environment that the user is very
comfortable using. This will promote
the use of this tool by people who are
not completely computer savvy.

Code Walkthrough
The Game Teleporter is made up

of a VC++.Net application, and a
VB.Net graphical front end. In addition
to those two, there are several files
associated with the plug-ins. The
demonstration files associated with the
Photoshop input plug-in and the
Playstation Portable output plug-in are
functional. The following section gives
a more in depth look at the code and
sample files used in the above mentioned
components.

Game Teleporter VC++.Net Code
Walkthrough
Flash.cpp
Flash.h
These files contain the base Flash class.
This class inherits from InputPlugin, and
is used to decode Adobe Flash Version 8
and lower files. This class is a work in
progress, and currently only decodes
results and displays them to the screen
via printfs. The difficulty in creating
this plug-in lies in the decoding of the
script language that Flash uses. This is
has been partially completed, and is not
an impossible goal, however more time
is needed for complete implementation
of this scripting language. As shown
below, a lot of the ground work has been

accomplished, however the details of
emulating this still remain to be
completed.

FlashDefines.h
This file contains definitions for known
values of commands and data types
encountered throughout the Flash SWF
file.

FlashStack.cpp
FlashStack.h
These files are a class that defines the
stack that Flash uses to store commands.
Commands are pushed and popped to the
stack, and this class adds, removes, and
accesses these commands. The plug-in
will eventually decode this stack as
generic source code which will be used
by an output plug-in.

FlashStackEntry.cpp
FlashStackEntry.h
These files define a class for one entry
on the stack. This includes the data type
of the entry on the stack, as well as what
value that entry currently holds.

GameTeleporter.cpp
GameTeleporter.h
These files contain the Game Teleporter
code outside of the plug-ins. This code
is very basic, and simply calls the correct
input plug-in for first stage decoding,
and then calls the correct output plug-in
for second stage decoding.

Image.cpp
Image.h
These files define the class for an image.
The information stored within this class
includes the path to the image, and
image attributes such as image bounds,
whether or not it is a necessary image,
and a string identifier.

InputPlugin.cpp
InputPlugin.h
These files define the base class for all
input plug-ins. All input plug-ins must
inherit from this base class.

OutputPlugin.cpp
OutputPlugin.h
These files define the base class for all
output plug-ins. All output plug-ins
must inherit from this base class.

Psd.cpp
Psd.h
These files define the class for the
Photoshop file format decoding. This
class inherits from InputPlugin. It takes
all layers in an Adobe Photoshop file and
saves them off as PNG files named as
their layer names. ImageMagick’s
convert creates the PNG files, and then
the PNG files are named according to
their layer names which are pulled
directly from the PSD file.

PspOut.cpp
PspOut.h
These files define the class for the
Playstation Portable output plug-in. This
class inherits from OutputPlugin. This
class takes the intermediate files created
by the input plug-in and creates a
Playstation Portable executable image.

GT Front End VB.Net Code Walkthrough
This software is a Graphical User Interface to make running the Game Teleporter usable
by anyone. A screen shot of this application is shown below:

Form1.vb
This file contains the main code for the
entire interface. This includes allowing
the user to select the input file and the
output file, along with the type of each.
When the Debug check box is selected,
the output of the GameTeleporter is
shown in a Dos Window only for
displaying Debug information.

PspOut.vb
This file contains the code for the user to
set up specific Playstation Portable build
information.

This setup screen contains two entries:
Title and Target. Title is the very nice
title which will be displayed on the
selection screen when the user runs the
application. The Target is the directory
name that the executable code will be

stored on the Playstation Portable and
must not contain any spaces.

Plug-in Directory Walkthrough
The demonstrated plug-ins are organized
into the following
\plugins
\--\Input
\--\--\Psd
\--\Intermediate
\--\Output
\--\--\psp
\--\--\--\final
\--\--\--\nochange

Psd Input Plug-in
By default, the Psd input plug-in
directory is empty. The Psd plug-in uses
this directory as a temporary scratch
storage area and all files are removed
after running.

Intermediate
This directory is written to by the input
plug-in and read from by the output
plug-in. This directory will be empty
when the input plug-in is run, and upon
completion of the input plug-in running
it will have files ready for the output
plug-in. The contents of the
intermediate directory will contain any
images needed, any header files created,
and a file called code.gtc. This file will
contain the commands that the input
plug-in needs executed. It will be up to
the output plug-in to read this file and
convert the commands inside of it into
commands the target will understand.

Psp Output Plug-in
This directory contains several files
required for the Playstation Portable
Output Plug-in. First off, the files

contained in the nochange directory are
files required to build all Psp
applications. The final directory
contains the completed source code for
the project as wells as any assets needed,
in this basic case images are the only
assets. Only two files are modified by
the Psp Output Plug-in, main.c and
Makefile. The Makefile contains tags to
enter the Target and Title of the
application. The main.c file contains
tags for entering additional header files,
additional variable definitions, and a tag
for the main loop of the application.

Conclusion
This paper has demonstrated how

the application can translate one file
format into another. It shows how easy
new plug-ins can be created for either a
new input or a new output format. The
application was designed with the
intention of it to be used by everyone at
all programming skill levels. A younger
student who desires to create a game can
do so by simply drawing pictures and
running it through the proper plug-ins.
A higher level student can write more
plug-ins, or modify the existing ones to
demonstrate programming abilities, or to
learn new ones. This broad range of
users and uses makes this tool a great
part of the education process. The ease
of adding new plug-ins will keep
students very interested, as well as
allowing this piece of software to evolve
with time.

References:

Adobe Photoshop 6.0 File Formats Specification Version 6.0 Release 2 November 2000.
Copyright 1991-2000 Adobe Systems Incorporated

Macromedia Flash (SWF) and Flash Video (FLV) File Format Specification Version 8
Copyright 2005 Adobe Systems Incorporated

