

Game TeleporterGame Teleporter
A Development Tool For EveryoneA Development Tool For Everyone

Presented By Tony MorelliPresented By Tony Morelli

4/13/20074/13/2007

OutlineOutline

 BackgroundBackground
 OverviewOverview
 DefinitionsDefinitions
 StudyStudy
 MethodologyMethodology
 Conclusion/QuestionsConclusion/Questions

Who Am I?Who Am I?

 BSEE Purdue UniversityBSEE Purdue University

 Platform Architect - Bally TechnologiesPlatform Architect - Bally Technologies
 Design Class 2 (Bingo) Games For Tribal CasinosDesign Class 2 (Bingo) Games For Tribal Casinos

UNR ProjectsUNR Projects

 Ambient Displays Of User MoodAmbient Displays Of User Mood
 Predicted Mood Of A User And Displayed On A ScreenPredicted Mood Of A User And Displayed On A Screen
 If Prediction Was Wrong, User Could Press A ButtonIf Prediction Was Wrong, User Could Press A Button
 C4.5 Was Used To Do The PredictingC4.5 Was Used To Do The Predicting
 Looked At Movement, And Keyboard And Mouse Looked At Movement, And Keyboard And Mouse

MovementsMovements
 Predicted Whether I Was Thinking Or ContentPredicted Whether I Was Thinking Or Content
 Predicted OK For Me, Probably Not OK For OthersPredicted OK For Me, Probably Not OK For Others

UNR ProjectsUNR Projects
 Ambient Displays Of User MoodAmbient Displays Of User Mood

UNR ProjectsUNR Projects
 Computer Generated Tic Tac Toe PlayerComputer Generated Tic Tac Toe Player

 Co-Evolution And Neural Networks To Create PlayerCo-Evolution And Neural Networks To Create Player
 Inputs To Neural Net – Board PositionsInputs To Neural Net – Board Positions
 Inputs To Neural Net – Whose TurnInputs To Neural Net – Whose Turn
 Output - What Square To Place TokenOutput - What Square To Place Token
 Evolved Against MiniMax Perfect PlayerEvolved Against MiniMax Perfect Player
 Evolved Player As Good As MiniMax Perfect PlayerEvolved Player As Good As MiniMax Perfect Player
 Co-Evolved Player As Good As MiniMax Perfect PlayerCo-Evolved Player As Good As MiniMax Perfect Player

UNR ProjectsUNR Projects

 SP2000 RoboGolf CompetitorSP2000 RoboGolf Competitor
 Collect Golf Balls And Return Them To The Collect Golf Balls And Return Them To The

Goal Located In The Center Of The RingGoal Located In The Center Of The Ring

UNR ProjectsUNR Projects

 Detecting Motion In Video GamesDetecting Motion In Video Games
 Control A Video Game System From ComputerControl A Video Game System From Computer
 Look At 3 Sequential FramesLook At 3 Sequential Frames
 Subtract Each One To Identify MotionSubtract Each One To Identify Motion
 Move Character Based On Objects In PathMove Character Based On Objects In Path
 Control Through Parallel PortControl Through Parallel Port
 Worked, But To Slow To Be UsefulWorked, But To Slow To Be Useful

UNR ProjectsUNR Projects

 Detecting Motion In Video GamesDetecting Motion In Video Games

UNR ProjectsUNR Projects

 Xbox Controller ControllerXbox Controller Controller
 Control An Xbox From Anywhere Without Control An Xbox From Anywhere Without

Opening An Xbox ControllerOpening An Xbox Controller
 TCP/IP Protocol From Controlling Device TCP/IP Protocol From Controlling Device

(Playstation Portable) To Controller(Playstation Portable) To Controller
 Gumstix Received Commands Sent Them Via Gumstix Received Commands Sent Them Via

Serial To Basic Stamp 2 Which Controlled ServosSerial To Basic Stamp 2 Which Controlled Servos

UNR ProjectsUNR Projects

 Xbox Controller ControllerXbox Controller Controller

UNR ProjectsUNR Projects

 Cross Platform Multiplayer GameCross Platform Multiplayer Game
 Play A Game On A Playstation Portable Against Play A Game On A Playstation Portable Against

Someone Playing The Same Game On A Nintendo Someone Playing The Same Game On A Nintendo
DSDS

 Simple Idea Difficult To ImplementSimple Idea Difficult To Implement
 Both Support C Compilers – However Many Both Support C Compilers – However Many

DifferencesDifferences
 How To Display An Image, Get Input, And Play A How To Display An Image, Get Input, And Play A

Sound Different On Each TargetSound Different On Each Target

UNR ProjectsUNR Projects

 Cross Platform Multiplayer GameCross Platform Multiplayer Game

 Need To Make This Easier To DevelopNeed To Make This Easier To Develop

MotivationMotivation

 Creating A Game On Multiple Platforms Creating A Game On Multiple Platforms
Should Be EasierShould Be Easier

 Tool Could Be Used For Education As WellTool Could Be Used For Education As Well
 Flexible Development Environment Should Flexible Development Environment Should

Allow Developers To Develop Exactly How Allow Developers To Develop Exactly How
They Want For Whatever Platform They NeedThey Want For Whatever Platform They Need

OverviewOverview

 The Game Teleporter Sets Up The Framework The Game Teleporter Sets Up The Framework
For Easy Multiplatform DevelopmentFor Easy Multiplatform Development

 Great Tool For Educational PurposesGreat Tool For Educational Purposes
 Easier To Generate ProgramsEasier To Generate Programs
 Easier To Learn New Development EnvironmentsEasier To Learn New Development Environments
 Easier To Learn New Target PlatformsEasier To Learn New Target Platforms

DefinitionsDefinitions

 Development EnvironmentDevelopment Environment
 A Way Of Creating A ProgramA Way Of Creating A Program
 Adobe FlashAdobe Flash

 Format Used By Web DevelopersFormat Used By Web Developers
 Easy To Program ForEasy To Program For

 Adobe PhotoshopAdobe Photoshop
 Simple Yet Powerful File FormatSimple Yet Powerful File Format

 Custom InterfaceCustom Interface
 Good For Beginning ProgrammersGood For Beginning Programmers

DefinitionsDefinitions

 Target Platform – Device Or Environment Target Platform – Device Or Environment
Where A Program Will RunWhere A Program Will Run
 Playstation PortablePlaystation Portable
 Nintendo DSNintendo DS
 QBasicQBasic
 Visual BasicVisual Basic

OverviewOverview

 Composed Of Input Plugins and Output Composed Of Input Plugins and Output
PluginsPlugins

 Any Input Plugin Can Be Used To Design The Any Input Plugin Can Be Used To Design The
SoftwareSoftware

 Any Output Plugin Can Be Used To Generate Any Output Plugin Can Be Used To Generate
An Executable Program On The Selected An Executable Program On The Selected
TargetTarget

StudyStudy

 A Study Was Conducted With 18 IndividualsA Study Was Conducted With 18 Individuals
 Ages 13-50Ages 13-50
 Skills – Skills –

 No Computer Experience (Outside Of Simple Applications No Computer Experience (Outside Of Simple Applications
– Internet, Email, Word, etc)– Internet, Email, Word, etc)

 Computer GamerComputer Gamer
 Professional Computer ProgrammerProfessional Computer Programmer

 Goal – Create A Simple Game That Demonstrates Goal – Create A Simple Game That Demonstrates
User Input And Displaying Images On Multiple User Input And Displaying Images On Multiple
Platforms Without Any Programming By The UserPlatforms Without Any Programming By The User

StudyStudy

 Participants In The Study Created A Game Participants In The Study Created A Game
Similar To PongSimilar To Pong

 No Code Was WrittenNo Code Was Written
 Used A Custom Program To Step Through The Used A Custom Program To Step Through The

ProcessProcess
 Game Teleporter Generated And Built All Game Teleporter Generated And Built All

CodeCode
 Playstation PortablePlaystation Portable
 Visual Basic.Net (PC Game)Visual Basic.Net (PC Game)

 Questions Were AskedQuestions Were Asked

Study - VideoStudy - Video

Study - VideoStudy - Video

Study - QuestionsStudy - Questions

 (1) Did You Think It Would Be That Easy To (1) Did You Think It Would Be That Easy To
Create A Game?Create A Game?

 (2) Was The Game Interesting?(2) Was The Game Interesting?
 (3) Which Game Was Better, PSP Or Visual (3) Which Game Was Better, PSP Or Visual

Basic?Basic?
 (4) Did Using This Application Make You (4) Did Using This Application Make You

Want To Be A Computer Programmer?Want To Be A Computer Programmer?
 (5) Do You Have Any Questions?(5) Do You Have Any Questions?

Study - PredictionsStudy - Predictions

 This Software Was So Great Everyone Who This Software Was So Great Everyone Who
Used It Would Want To Write Software For A Used It Would Want To Write Software For A
Living.Living.

Study ResultsStudy Results

 (1) Did You Think It Would Be That Easy To (1) Did You Think It Would Be That Easy To
Create A Game?Create A Game?
 Non Programmers Did Not Think It Would Be Non Programmers Did Not Think It Would Be

That Easy To Create A GameThat Easy To Create A Game
 Programmers Were More Impressed That A Game Programmers Were More Impressed That A Game

Was Created That Easily For The Playstation Was Created That Easily For The Playstation
Portable As Opposed To The PC Version.Portable As Opposed To The PC Version.

Study - ResultsStudy - Results

 (2) Was The Game Interesting?(2) Was The Game Interesting?
 Most Common Answer – It Would Be Better If It Most Common Answer – It Would Be Better If It

Kept ScoreKept Score
 Younger Gamers Wanted To Immediately Know Younger Gamers Wanted To Immediately Know

How To ‘Beat The Game’ – There Was No Way To How To ‘Beat The Game’ – There Was No Way To
Beat itBeat it

 Experienced Programmers Overlooked The Experienced Programmers Overlooked The
Simplistic Game And Saw The Potential Of The Simplistic Game And Saw The Potential Of The
ToolTool

Study - ResultsStudy - Results

 (3) Which Game Was Better, PSP Or Visual Basic?(3) Which Game Was Better, PSP Or Visual Basic?
 Older Participants (College Age And Older) Were More Older Participants (College Age And Older) Were More

Interested In The Visual Basic PC VersionInterested In The Visual Basic PC Version
 Final Game Could Be Run On Their Own PCFinal Game Could Be Run On Their Own PC

 Younger Group Was More Interested In The PSP Version Younger Group Was More Interested In The PSP Version
Because Of The ‘Cool Factor’Because Of The ‘Cool Factor’
 None Of The Kids In The Study Owned A PSP, However They All None Of The Kids In The Study Owned A PSP, However They All

Knew The Cool Kid That Had OneKnew The Cool Kid That Had One
 Making A Game Run On A PSP Could Turn A Normal Kid Into A Making A Game Run On A PSP Could Turn A Normal Kid Into A

Cool KidCool Kid

Study - ResultsStudy - Results

 (4) Did Using This Application Make You (4) Did Using This Application Make You
Want To Be A Computer Programmer?Want To Be A Computer Programmer?
 Only Asked To Non ProgrammersOnly Asked To Non Programmers
 The Answer, Unfortunately, Was No In All CasesThe Answer, Unfortunately, Was No In All Cases

Study - ResultsStudy - Results

 (5) Do You Have Any Questions?(5) Do You Have Any Questions?
 Longest Part Of The StudyLongest Part Of The Study
 Engineers Wanted To Know In Detail How Engineers Wanted To Know In Detail How

Everything WorkedEverything Worked
 Perspective Engineers Wanted To Know How To Perspective Engineers Wanted To Know How To

Write ProgramsWrite Programs
 Non Engineers Made Suggestions To Make It Non Engineers Made Suggestions To Make It

BetterBetter

Study - ConclusionStudy - Conclusion

 The Game Teleporter Did Not Make Everyone The Game Teleporter Did Not Make Everyone
Want To Drop Everything And Write SoftwareWant To Drop Everything And Write Software

 It Did Make Everyone Ask Questions And It Did Make Everyone Ask Questions And
Begin To Think About What Role Each Person Begin To Think About What Role Each Person
Could Play In A Development TeamCould Play In A Development Team

 Overall It Was A Complete SuccessOverall It Was A Complete Success

Similar ProjectsSimilar Projects
 Code ConverterCode Converter

 Do Not Work Very WellDo Not Work Very Well
 Most Convert Between Similar LanguagesMost Convert Between Similar Languages

 The Game Maker’s ApprenticeThe Game Maker’s Apprentice
 Forced To Use Supplied InterfaceForced To Use Supplied Interface
 Does Not Support Multiple TargetsDoes Not Support Multiple Targets

 Game EditorGame Editor
 Forced To Use Supplied InterfaceForced To Use Supplied Interface
 Supports Multiple Targets, But Only The Targets The Creator Of The Software Supports Multiple Targets, But Only The Targets The Creator Of The Software

Wants To SupportWants To Support
 Run Time Interpreter (JAVA,Flash)Run Time Interpreter (JAVA,Flash)

 Requires Distributor Of JAVA or Flash To Write A Runtime Interpreter For Requires Distributor Of JAVA or Flash To Write A Runtime Interpreter For
Each Target PlatformEach Target Platform

 Author Of The Interpreter May Not Be An ExpertAuthor Of The Interpreter May Not Be An Expert
 Run Time Interpretation Is SlowRun Time Interpretation Is Slow

Game Teleporter BenefitsGame Teleporter Benefits

 Open Source Allows Experts To ContributeOpen Source Allows Experts To Contribute
 If A New Plugin Is Required The User Has The If A New Plugin Is Required The User Has The

Option To Become An Expert In The Field, Or Option To Become An Expert In The Field, Or
Find An Expert To Write The PluginFind An Expert To Write The Plugin

 Not Dependant On The Distributor Of The Not Dependant On The Distributor Of The
Software To Write PluginsSoftware To Write Plugins

 No Run Time Interpretation, All Code Is Built No Run Time Interpretation, All Code Is Built
For A Specific TargetFor A Specific Target

Software DesignSoftware Design

 Input Plugins Convert To Intermediate FormatInput Plugins Convert To Intermediate Format
 Output Plugins Read Intermediate Format And Output Plugins Read Intermediate Format And

Convert To Specific Target.Convert To Specific Target.
 Psd Plugin Takes Images From Layers And Generates Psd Plugin Takes Images From Layers And Generates

Intermediate Code To Play A Slide ShowIntermediate Code To Play A Slide Show
 Playstation Portable Output Plugin Takes Playstation Portable Output Plugin Takes

Intermediate Code And Generates And Builds Native Intermediate Code And Generates And Builds Native
PSP Code To Run A Slide Show Based On The Psd PSP Code To Run A Slide Show Based On The Psd
File On The Playstation Portable ItselfFile On The Playstation Portable Itself

Input PluginsInput Plugins

 Adobe FlashAdobe Flash
 Adobe PhotoshopAdobe Photoshop
 Custom Game Creation PluginCustom Game Creation Plugin

Flash Input PluginFlash Input Plugin

 Written In C++Written In C++
 Over 2000 Lines Of CodeOver 2000 Lines Of Code
 Implementation Of Variables And StackImplementation Of Variables And Stack

Psd Input PluginPsd Input Plugin

 Written In C++Written In C++
 Over 1000 Lines Of CodeOver 1000 Lines Of Code
 Supports Displaying Of ImagesSupports Displaying Of Images
 Uses ImageMagickUses ImageMagick

 Open Source Command Line Graphics PackageOpen Source Command Line Graphics Package
 Converts Layers To PngsConverts Layers To Pngs

Custom Game Creation PluginCustom Game Creation Plugin

 Written In C#Written In C#
 Over 1500 Lines Of CodeOver 1500 Lines Of Code
 Generates Intermediate Code For A Pong-Like Generates Intermediate Code For A Pong-Like

GameGame

Intermediate File FormatIntermediate File Format

 Images Stored As PNGsImages Stored As PNGs
 Source Code Is “c-like”Source Code Is “c-like”
 Supports Images, Include Files, User Defined Supports Images, Include Files, User Defined

FunctionsFunctions

Intermediate File Format - SampleIntermediate File Format - Sample

Output PluginsOutput Plugins

 Starts With Skeleton Set Of FilesStarts With Skeleton Set Of Files
 Skeleton Set – All Required Files To Build An AppSkeleton Set – All Required Files To Build An App
 Inside Of Skeleton Set Are TagsInside Of Skeleton Set Are Tags

 INCLUDES, DECLARATIONS, MAINLOOP, INCLUDES, DECLARATIONS, MAINLOOP,
FUNCTIONSFUNCTIONS

 Output Plugin Generates Code For The Different Sets Output Plugin Generates Code For The Different Sets
Of Tags Based On Intermediate Files.Of Tags Based On Intermediate Files.

 Generated Code Is Inserted Into The Proper Place In Generated Code Is Inserted Into The Proper Place In
The Proper FilesThe Proper Files

 All Output Plugins Must Implement Required All Output Plugins Must Implement Required
FunctionsFunctions

Visual Basic.Net Output PluginVisual Basic.Net Output Plugin

 Written In C++Written In C++
 Over 1100 Lines Of CodeOver 1100 Lines Of Code
 Skeleton Set Of Files Includes SolutionSkeleton Set Of Files Includes Solution

 Dim count As Int16 = 0Dim count As Int16 = 0
 While 1While 1
 Application.DoEvents()Application.DoEvents()
 '<MAINLOOP>'<MAINLOOP>
 '</MAINLOOP>'</MAINLOOP>
 End IfEnd If
 End WhileEnd While

Visual Basic.Net Output PluginVisual Basic.Net Output Plugin

 After Code Generation Plugin Invokes After Code Generation Plugin Invokes
Command Line BuilderCommand Line Builder
 Devenv /build debug template.sln Will Build Devenv /build debug template.sln Will Build

Template.SlnTemplate.Sln

PSP Output PluginPSP Output Plugin

 Written In C++Written In C++
 Over 700 Lines Of CodeOver 700 Lines Of Code
 Skeleton File Includes All Files Necessary To Skeleton File Includes All Files Necessary To

Build A PSP GameBuild A PSP Game
 Copies Files To Build Environment Within Copies Files To Build Environment Within

CygwinCygwin
 Can Run Unsigned Code Because Of The ‘%’ Can Run Unsigned Code Because Of The ‘%’

CharacterCharacter

PSP Output PluginPSP Output Plugin
 Skeleton FileSkeleton File

 while (1)while (1)
 {{
 clearScreen(0xff);clearScreen(0xff);
 //<MAINLOOP>//<MAINLOOP>
 //</MAINLOOP>//</MAINLOOP>
 sceDisplayWaitVblankStart();sceDisplayWaitVblankStart();
 flipScreen();flipScreen();
 if (button.Buttons & PSP_CTRL_TRIANGLE)if (button.Buttons & PSP_CTRL_TRIANGLE)
 {{
 sceKernelSleepThread();sceKernelSleepThread();
 return 0; return 0;
 break;break;
 }}
 sceKernelDelayThread(10000);sceKernelDelayThread(10000);
 }}

QBasic Output PluginQBasic Output Plugin

 Written In C++Written In C++
 Over 1000 Lines Of CodeOver 1000 Lines Of Code
 DOS Requires Filenames Of Only 8 DOS Requires Filenames Of Only 8

CharactersCharacters
 Variables And Functions Have Special Variables And Functions Have Special

Characters At The End Of Names As Characters At The End Of Names As
Designations Of Variable TypeDesignations Of Variable Type
 Had To Keep Track Of Variable Types So They Had To Keep Track Of Variable Types So They

Were Printed Correctly In Basic Output FileWere Printed Correctly In Basic Output File

QBasic Output PluginQBasic Output Plugin
 Skeleton FileSkeleton File

 DO WHILE k$ <> ""DO WHILE k$ <> ""

 IF k$ = CHR$(27) THEN ENDIF k$ = CHR$(27) THEN END
 IF k$ = "W" THEN upPressed% = 1IF k$ = "W" THEN upPressed% = 1
 IF k$ = "S" THEN downPressed% = 1IF k$ = "S" THEN downPressed% = 1
 IF k$ = "A" THEN leftPressed% = 1IF k$ = "A" THEN leftPressed% = 1
 IF k$ = "D" THEN rightPressed% = 1IF k$ = "D" THEN rightPressed% = 1
 k$ = INKEYk = INKEY$
 LOOPLOOP
 END DEFEND DEF
 DODO
 updateNeeded% = 0updateNeeded% = 0
 REM <MAINLOOP>REM <MAINLOOP>
 REM </MAINLOOP> REM </MAINLOOP>
 LOOPLOOP
 REM </FILE>REM </FILE>

Create Bounce Game Source CodeCreate Bounce Game Source Code

 Intermediate Code PSP Code VB.Net CodeIntermediate Code PSP Code VB.Net Code

Create Bounce Game Source CodeCreate Bounce Game Source Code

 Intermediate Code PSP Code VB.Net Code

SummarySummary

 The Game Teleporter Sets Up The Framework The Game Teleporter Sets Up The Framework
For Easy Multiplatform DevelopmentFor Easy Multiplatform Development

 Great Tool For Educational PurposesGreat Tool For Educational Purposes
 Easier To Generate ProgramsEasier To Generate Programs
 Easier To Learn New Development EnvironmentsEasier To Learn New Development Environments
 Easier To Learn New Target PlatformsEasier To Learn New Target Platforms

Summary ContinuedSummary Continued

 Demonstrated Both The Design And Demonstrated Both The Design And
Implementation Of An Entire ProjectImplementation Of An Entire Project

 Appropriate Languages Were Used (C# For Appropriate Languages Were Used (C# For
User Interface, C++ For The Game Teleporter User Interface, C++ For The Game Teleporter
Itself)Itself)

 Create A Study And Analyze The ResultsCreate A Study And Analyze The Results

Future WorkFuture Work

 This Project Is Open SourceThis Project Is Open Source
 Source Is Available Now AtSource Is Available Now At

 http://www.tonymorelli.comhttp://www.tonymorelli.com

 Will Be On SourceforgeWill Be On Sourceforge
 Plugins Will Be Created By The Experts In Plugins Will Be Created By The Experts In

Each AreaEach Area
 Paper Will Be Presented At FIE 2007Paper Will Be Presented At FIE 2007

http://www.tonymorelli.com/

Questions/CommentsQuestions/Comments

	Game Teleporter A Development Tool For Everyone
	Outline
	Who Am I?
	UNR Projects
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Motivation
	Overview
	Definitions
	Slide 17
	Slide 18
	Study
	Slide 20
	Study - Video
	Slide 22
	Study - Questions
	Study - Predictions
	Study Results
	Study - Results
	Slide 27
	Slide 28
	Slide 29
	Study - Conclusion
	Similar Projects
	Game Teleporter Benefits
	Software Design
	Input Plugins
	Flash Input Plugin
	Psd Input Plugin
	Custom Game Creation Plugin
	Intermediate File Format
	Intermediate File Format - Sample
	Output Plugins
	Visual Basic.Net Output Plugin
	Slide 42
	PSP Output Plugin
	Slide 44
	QBasic Output Plugin
	Slide 46
	Create Bounce Game Source Code
	Slide 48
	Summary
	Summary Continued
	Future Work
	Questions/Comments

	Widget0: <INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

</INCLUDES>

<DECLARATIONS>

InputButton button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

</DECLARATIONS>

<MAINLOOP>

 GetInput();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

</MAINLOOP>

<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

</FUNCTIONS>

	_2: void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

	1: void MovePlayer()

{

 if (button.Buttons & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button.Buttons & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

	2: Private Sub MovePlayer()

 if (rightPressed = True) Then

 picts(0).left = picts(0).left + moveDelta

End If

 if (leftPressed = True) Then

 picts(0).left = picts(0).left - moveDelta

End If

End Sub

	_3: <INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

</INCLUDES>

<DECLARATIONS>

InputButton button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

</DECLARATIONS>

<MAINLOOP>

 GetInput();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

</MAINLOOP>

<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

</FUNCTIONS>

	1_2: #include <pspdisplay.h>

#include <pspctrl.h>

#include <pspkernel.h>

#include <pspdebug.h>

#include <pspgu.h>

#include <png.h>

#include <stdio.h>

#include "graphics.h"

#define RIGHT PSP_CTRL_RIGHT

#define LEFT PSP_CTRL_LEFT

//<INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

#define printf pspDebugScreenPrintf

#define MAX(X,Y) ((X)>(Y) ? (X):(Y))

//<DECLARATIONS>

SceCtrlData button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

PSP_MODULE_INFO("OutApp",0,1,1);

SceCtrlData ProcessInputs();

void ClearCurrentScreen();

void DisplayImage(struct Picture _pict);

void HideImage(struct Picture _pict);

Image * ourImage[10];

				

//PSP_MODULE_INFO("Image Display Program",0,1,1);

int exit_callback(int arg1, int arg2, void * common)

{

 sceKernelExitGame();

 return 0;

}

int CallbackThread(SceSize args, void * argp)

{

 int cbid;

 cbid = sceKernelCreateCallback("Exit Callback", exit_callback, NULL);

 sceKernelRegisterExitCallback(cbid);

 sceKernelSleepThreadCB();

 return 0;

}

int SetupCallbacks(void)

{

 int thid = 0;

 thid = sceKernelCreateThread("update_thread", CallbackThread,

 0x11, 0xFA0,0,0);

 if (thid >=0)

 {

 sceKernelStartThread(thid,0,0);

 }

 return thid;

}

int main()

{

 int x = 0;	

 pspDebugScreenInit();

 SetupCallbacks();

 initGraphics();

 sceDisplayWaitVblankStart();

 flipScreen();

 for (x = 0; x< TOTAL_PICTURES; x++)

 {

 ourImage[x] = loadImage(picts[x].fileName);

 }

 while (1)

 {

 clearScreen(0xff);

	

//<MAINLOOP>

 button = ProcessInputs();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

//</MAINLOOP>

 sceDisplayWaitVblankStart();

 flipScreen();

 if (button.Buttons & PSP_CTRL_TRIANGLE)

 {

 sceKernelSleepThread();

 return 0;

 break;

 }

 sceKernelDelayThread(10000);

 }

 sceKernelSleepThread();

 return 0;

}

SceCtrlData ProcessInputs()

{

 SceCtrlData pad;

 sceCtrlReadBufferPositive(&pad, 1);

 return pad;

}

void ClearCurrentScreen()

{

 clearScreen(0xff);

 sceDisplayWaitVblankStart();

 flipScreen();

}

void DisplayImage(struct Picture _pict)

{

 char buffer[128];

 int sizeX;

 int sizeY;

 int x = 0;

 int picIndex = 0;

 for (x = 0; x< TOTAL_PICTURES; x++)

 {

 if (strcmp(_pict.fileName, picts[x].fileName) == 0)

 {

 picIndex = x;

 }

 }

 if (0) //if the pic is not already in memory, load it

 {

 sprintf(buffer, "%s", _pict.fileName);

 clearScreen(0xff);

// ourImage = loadImage(buffer);

 }

 sizeX = _pict.right - _pict.left;

 sizeY = _pict.bottom - _pict.top;

 blitAlphaImageToScreen(0,0,sizeX,sizeY,ourImage[picIndex],

 _pict.left,_pict.top);

}

void HideImage(struct Picture _pict)

{

}

//<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button.Buttons & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button.Buttons & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button.Buttons & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button.Buttons & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

//</FUNCTIONS>

//</FILE>
	2_2: Public Class Form1

 Inherits System.Windows.Forms.Form

 <System.Runtime.InteropServices.DllImport("user32.dll")> Private Shared _

 Function GetAsyncKeyState(ByVal key As Keys) As Integer

 End Function

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox

 Friend WithEvents PictureBox2 As System.Windows.Forms.PictureBox

 Friend WithEvents PictureBox3 As System.Windows.Forms.PictureBox

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Dim resources As System.Resources.ResourceManager = New System.Resources.ResourceManager(GetType(Form1))

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(500, 300)

 Me.Name = "Form1"

 Me.Text = "Form1"

 Me.ResumeLayout(False)

 End Sub

#End Region

 Dim upPressed As Boolean = False

 Dim downPressed As Boolean = False

 Dim leftPressed As Boolean = False

 Dim rightPressed As Boolean = False

'<HEADER>

	Dim picts(100) as PictureBox

	Dim TOTAL_PICTURES as Int16 = 3

'<DECLARATIONS>

Dim ballVertDirection as Int16= 1

Dim ballHorizDirection as Int16= 1

Dim moveDelta as Int16= 10

Dim oppMoveDelta as Int16= 10

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

'<INITIALIZE>

	picts(0) = new PictureBox

	picts(0).Image = System.Drawing.Bitmap.FromFile("MyPaddle.png")

	picts(0).Top = 200

	picts(0).Left = 200

	picts(0).Show()

	picts(0).Height = 30

	picts(0).Width = 60

	Controls.Add(picts(0))

	picts(1) = new PictureBox

	picts(1).Image = System.Drawing.Bitmap.FromFile("ball.png")

	picts(1).Top = 100

	picts(1).Left = 200

	picts(1).Show()

	picts(1).Height = 5

	picts(1).Width = 5

	Controls.Add(picts(1))

	picts(2) = new PictureBox

	picts(2).Image = System.Drawing.Bitmap.FromFile("YourPaddle.png")

	picts(2).Top = 0

	picts(2).Left = 200

	picts(2).Show()

	picts(2).Height = 30

	picts(2).Width = 60

	Controls.Add(picts(2))

'</INITIALIZE>

' moveDelta = 5

' oppMoveDelta = 1

 Debug.WriteLine("Starting up")

 MyBase.KeyPreview = True

 MyBase.Show()

 Dim count As Int16 = 0

 While 1

 Application.DoEvents()

 count = count + 1

 If (count = 15000) Then

 count = 0

'<MAINLOOP>

ProcessInputs()

 MoveBall()

 MoveOpponent()

 MovePlayer()

 UpdateScreen()

'</MAINLOOP>

 End If

 End While

 End Sub

 Private Sub FormClosing(ByVal sender As System.Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 Application.Exit()

 End

 End Sub

 Private Sub ProcessInputs()

 upPressed = False

 downPressed = False

 leftPressed = False

 rightPressed = False

 If (GetAsyncKeyState(Keys.Up) <> 0) Then

 upPressed = True

 End If

 If (GetAsyncKeyState(Keys.Down) <> 0) Then

 downPressed = True

 End If

 If (GetAsyncKeyState(Keys.Left) <> 0) Then

 leftPressed = True

 End If

 If (GetAsyncKeyState(Keys.Right) <> 0) Then

 rightPressed = True

 End If

 End Sub

 Private Sub ClearScreen()

 Dim x As Int16

 For x = 0 To TOTAL_PICTURES - 1

 picts(x).Hide()

 Next

 End Sub

 Private Sub DisplayImage(ByVal _image As PictureBox)

 _image.Show()

 End Sub

 Private Sub HideImage(ByVal _image As PictureBox)

 _image.Hide()

 End Sub

'<FUNCTIONS>

Private Sub MoveBall()

 if (ballVertDirection = 1) Then

 picts(1).top = picts(1).top + 1

 Else

 picts(1).top = picts(1).top - 1

End If

 if (ballHorizDirection = 1) Then

 picts(1).left = picts(1).left + 1

 Else

 picts(1).left = picts(1).left - 1

End If

 if (picts(1).left > 290) Then

 ballHorizDirection = 0

 Else If (picts(1).left < 10)

 ballHorizDirection = 1

End If

 if (picts(1).top < picts(2).top + 15 and picts(1).left > picts(2).left and picts(1).left < picts(2).left + 60) Then

 ballVertDirection = 1

 Else If (picts(1).top > picts(0).top and picts(1).left > picts(0).left and picts(1).left < picts(0).left + 60)

 ballVertDirection = 0

 if (rightPressed = True) Then

 ballHorizDirection = 1

 Else If (leftPressed = True)

 ballHorizDirection = 0

End If

 Else If(picts(1).top > picts(0).top and (picts(1).left < picts(0).left or picts(1).left > picts(0).left + 60))

 ballVertDirection = 1

 picts(1).top = picts(2).top + 15 + 10

 Else If (picts(1).top < picts(2).top and (picts(1).left < picts(2).left or picts(1).left > picts(2).left + 60))

 ballVertDirection = 0

 picts(1).top = picts(0).top - 10

End If

End Sub

Private Sub MoveOpponent()

 if (picts(2).left + 30 > picts(1).left) Then

 picts(2).left = picts(2).left - oppMoveDelta

End If

 if (picts(2).left + 30 < picts(1).left) Then

 picts(2).left = picts(2).left + oppMoveDelta

End If

End Sub

Private Sub MovePlayer()

 if (rightPressed = True) Then

 picts(0).left = picts(0).left + moveDelta

End If

 if (leftPressed = True) Then

 picts(0).left = picts(0).left - moveDelta

End If

End Sub

Private Sub UpdateScreen()

 HideImage(picts(0))

 HideImage(picts(1))

 HideImage(picts(2))

 DisplayImage(picts(0))

 DisplayImage(picts(1))

 DisplayImage(picts(2))

End Sub

'</FUNCTIONS>

End Class

'</FILE>

