Game Teleporter
A Development Tool For Everyone

Presented By Tony Morelli
4/13/2007

Outline

® Background
B Overview

B Definitions

B Study

® Methodology

® Conclusion/Questions

Who Am 1I?

® BSEE Purdue University

B Platform Architect - Bally Technologies
" Design Class 2 (Bingo) Games For Tribal Casinos

C5ully

TECHHELDGEES{

UNR Projects

® Ambient Displays Of User Mood
® Predicted Mood Of A User And Displayed On A Screen
" [f Prediction Was Wrong, User Could Press A Button
® (C4.5 Was Used To Do The Predicting

" Looked At Movement, And Keyboard And Mouse
Movements

" Predicted Whether I Was Thinking Or Content
" Predicted OK For Me, Probably Not OK For Others

UNR Projects
® Ambient Displays Of User Mood

UNR Projects

® Computer Generated Tic Tac Toe Player
® Co-Evolution And Neural Networks To Create Player
® Inputs To Neural Net — Board Positions
® Inputs To Neural Net — Whose Turn
® Qutput - What Square To Place Token
" Evolved Against MiniMax Perfect Player
" Evolved Player As Good As MiniMax Perfect Player
® Co-Evolved Player As Good As MiniMax Perfect Player

O X
X X O
O X O

UNR Projects

® SP2000 RoboGolf Competitor

B Collect Golf Balls And Return Them To The
Goal Located In The Center Of The Ring

UNR Projects

B Detecting Motion In Video Games
® Control A Video Game System From Computer
" Look At 3 Sequential Frames
® Subtract Each One To Identify Motion
® Move Character Based On Objects In Path
® Control Through Parallel Port
® Worked, But To Slow To Be Useful

UNR Projects

® Detecting Motion In Video Games

UNR Projects

B Xbox Controller Controller

" Control An Xbox From Anywhere Without
Opening An Xbox Controller

= TCP/IP Protocol From Controlling Device
(Playstation Portable) To Controller

" Gumstix Received Commands Sent Them Via
Serial To Basic Stamp 2 Which Controlled Servos

UNR Projects

" Xbox Controller Controller

UNR Projects

® Cross Platform Multiplayer Game

® Play A Game On A Playstation Portable Against

Someone Playing The Same Game On A Nintendo
DN

= Simple Idea Difficult To Implement

® Both Support C Compilers — However Many
Differences

" How To Display An Image, Get Input, And Play A
Sound Different On Each Target

UNR Projects

’

® Need To Make This Easier To Develop

Motivation

B Creating A Game On Multiple Platforms
Should Be Easier

B Tool Could Be Used For Education As Well

B Flexible Development Environment Should
Allow Developers To Develop Exactly How
They Want For Whatever Platform They Need

Overview

B The Game Teleporter Sets Up The Framework
For Easy Multiplatform Development

B Great Tool For Educational Purposes
® Easier To Generate Programs

" Easier To Learn New Development Environments

" Easier To Learn New Target Platforms

Definitions

B Development Environment
" A Way Of Creating A Program

" Adobe Flash
® Format Used By Web Developers
® Fasy To Program For

= Adobe Photoshop

® Simple Yet Powerful File Format

¥ Custom Interface

® Good For Beginning Programmers

Definitions

B Target Platform — Device Or Environment
Where A Program Will Run

" Playstation Portable
® Nintendo DS
" QBasic

® Visual Basic

Overview

B Composed Of Input Plugins and Output
Plugins

® Any Input Plugin Can Be Used To Design The
Software

® Any Output Plugin Can Be Used To Generate
An Executable Program On The Selected
Target

Study

® A Study Was Conducted With 18 Individuals
" Ages 13-50
® Skills —

" No Computer Experience (Outside Of Simple Applications
— Internet, Email, Word, etc)

® Computer Gamer
® Professional Computer Programmer

® Goal — Create A Stmple Game That Demonstrates
User Input And Displaying Images On Multiple
Platforms Without Any Programming By The User

Study

B Participants In The Study Created A Game
Similar To Pong

B No Code Was Written

B Used A Custom Program To Step Through The
Process

B Game Teleporter Generated And Built All
Code

" Playstation Portable
® Visual Basic.Net (PC Game)

® Questions Were Asked

Study - Video

= 13: 2b 4b ec
14: 13 49 eh :
15: 13 65 dc = il
a 23 43 72 65 61 74 65 28 7?7 69 74 68 20 54 68 65 208 47 49 44 58 a 35 i

a Hello UWorld

a 36 38 28 33 38 a 32
B: £ff £ff ff
1: f1 ef e2
a 36 38 20 33 38

35 a Summary: Total Unigue Bytes: 2

32 a Hello World

a

a 32 35 35 a Summary: Total Unigue Bytes: 2

a 32 a ball.bmp

= 3 file<s> copied.
“4ball.ppm.ton
_JhyPaddle.ppm.ton
YourPaddle.ppm.ton
3 3 file(s> copied.

Defc:\Documents and Settings\wagon:My Documents\Uisual Studio
ersdebug>

Study - Video

meTeleporier\debugplugins youtputvh. netvbtemplate bin| ¥ Lj

=

Study - Questions

® (1) Did You Think It Would Be That Easy To
Create A Game?

B (2) Was The Game Interesting?

® (3) Which Game Was Better, PSP Or Visual
Basic?

® (4) Did Using This Application Make You
Want To Be A Computer Programmer?

® (5) Do You Have Any Questions?

Study - Predictions

B This Software Was So Great Everyone Who

Used It Would Want To Write Software For A
Living.

Study Results

® (1) Did You Think It Would Be That Easy To
Create A Game?

® Non Programmers Did Not Think It Would Be
That Easy To Create A Game

" Programmers Were More Impressed That A Game
Was Created That Easily For The Playstation
Portable As Opposed To The PC Version.

Study - Results

® (2) Was The Game Interesting?

" Most Common Answer — It Would Be Better If It
Kept Score

" Younger Gamers Wanted To Immediately Know

How To ‘Beat The Game’ — There Was No Way To
Beat it

® Experienced Programmers Overlooked The
Simplistic Game And Saw The Potential Of The
Tool

Study - Results

® (3) Which Game Was Better, PSP Or Visual Basic?

® Older Participants (College Age And Older) Were More
Interested In The Visual Basic PC Version
B Final Game Could Be Run On Their Own PC

® Younger Group Was More Interested In The PSP Version
Because Of The ‘Cool Factor’

® None Of The Kids In The Study Owned A PSP, However They All
Knew The Cool Kid That Had One

B Making A Game Run On A PSP Could Turn A Normal Kid Into A
Cool Kid

Study - Results

® (4) Did Using This Application Make You
Want To Be A Computer Programmer?

® Only Asked To Non Programmers
® The Answer, Unfortunately, Was No In All Cases

Study - Results

® (5) Do You Have Any Questions?
" Longest Part Of The Study

" Engineers Wanted To Know In Detail How
Everything Worked

" Perspective Engineers Wanted To Know How To
Write Programs

® Non Engineers Made Suggestions To Make It
Better

Study - Conclusion

® The Game Teleporter Did Not Make Everyone
Want To Drop Everything And Write Software

B |t Did Make Everyone Ask Questions And
Begin To Think About What Role Each Person
Could Play In A Development Team

B Overall It Was A Complete Success

Similar Projects

Code Converter

® Do Not Work Very Well

® Most Convert Between Similar Languages
The Game Maker’s Apprentice

® Forced To Use Supplied Interface

® Does Not Support Multiple Targets

Game Editor
® Forced To Use Supplied Interface

= Supports Multiple Targets, But Only The Targets The Creator Of The Software
Wants To Support

Run Time Interpreter (JAVA, Flash)

® Requires Distributor Of JAVA or Flash To Write A Runtime Interpreter For
Each Target Platform

= Author Of The Interpreter May Not Be An Expert
® Run Time Interpretation Is Slow

Game Teleporter Benefits

® Open Source Allows Experts To Contribute

" [f A New Plugin Is Required The User Has The
Option To Become An Expert In The Field, Or
Find An Expert To Write The Plugin

® Not Dependant On The Distributor Of The
Software To Write Plugins

® No Run Time Interpretation, All Code Is Built
For A Specific Target

Software Design

Input Plugins Convert To Intermediate Format

Output Plugins Read Intermediate Format And
Convert To Specific Target.

Psd Plugin Takes Images From Layers And Generates
Intermediate Code To Play A Slide Show

Playstation Portable Output Plugin Takes
Intermediate Code And Generates And Builds Native
PSP Code To Run A Slide Show Based On The Psd
File On The Playstation Portable Itself

Input Plugins

® Adobe Flash
® Adobe Photoshop

B Custom Game Creation Plugin

Flash Input Plugin

® Written In C++
B Over 2000 Lines Of Code
B [mplementation Of Variables And Stack

Psd Input Plugin

® Written In C++

B Over 1000 Lines Of Code

B Supports Displaying Of Images
B Uses ImageMagick

® Open Source Command Line Graphics Package

® Converts Layers To Pngs

Custom Game Creation Plugin

B Written In C#
® Over 1500 Lines Of Code

B Generates Intermediate Code For A Pong-Like
Game

Intermediate File Format

® Images Stored As PNGs
B Source Code Is “c-like”

B Supports Images, Include Files, User Defined
Functions

Intermediate File Format - Sample

Output Plugins

B Starts With Skeleton Set Of Files

B Skeleton Set — All Required Files To Build An App

B [nside Of Skeleton Set Are Tags

= INCLUDES, DECLARATIONS, MAINLOOP,
FUNCTIONS

Output Plugin Generates Code For The Different Sets
Of Tags Based On Intermediate Files.

Generated Code Is Inserted Into The Proper Place In
The Proper Files

All Output Plugins Must Implement Required
Functions

Visual Basic.Net Output Plugin

B Written In C++
® Over 1100 Lines Of Code

B Skeleton Set Of Files Includes Solution
" Dim count As Int16 =0
- While 1
2 Application.DoEvents()
= '<MAINLOOP>
= '</MAINLOOP>
0 End If
0 End While

Visual Basic.Net Output Plugin

B After Code Generation Plugin Invokes
Command Line Builder

® Devenv /build debug template.sln Will Build
Template.Sln

PSP Output Plugin

B Written In C++
B Over 700 Lines Of Code

B Skeleton File Includes All Files Necessary To
Build A PSP Game

B Copies Files To Build Environment Within
Cygwin

® Can Run Unsigned Code Because Of The ‘%’
Character

PSP Output Plugin

®m Skeleton File
while (1)
{

clearScreen(0xff);
/[<MAINLOOP>
[[<IMAINLOOP>
sceDisplayWaitVblankStart();
flipScreen();
if (button.Buttons & PSP_CTRL TRIANGLE)
d
sceKernelSleepThread();
return O;
break;

h
sceKernelDelay Thread(10000);

j

QBasic Output Plugin

B Written In C++
® Over 1000 Lines Of Code

® DOS Requires Filenames Of Only 8
Characters

® Variables And Functions Have Special
Characters At The End Of Names As
Designations Of Variable Type

® Had To Keep Track Of Variable Types So They
Were Printed Correctly In Basic Output File

QBasic Output Plugin

® Skeleton File
®= DO WHILE k$ <>""

" IFk$=CHR$(27) THEN END

) IF k$ = "W" THEN upPressed% = 1
3 IF k$ ="S" THEN downPressed% = 1
. IF k$ ="A" THEN leftPressed% = 1
A IF k$ = "D" THEN rightPressed% = 1
3 k$ = INKEYS$

= LOOP

= END DEF

= DO

® updateNeeded% = 0

= REM <MAINLOOP>

" REM </MAINLOOP>

= LOOP

|

REM </FILE>

Create Bounce Game Source Code

B [ntermediate Code PSP Code VB.Net Code

Create Bounce Game Source Code

B [ntermediate Code PSP Code VB.Net Code

Summary

B The Game Teleporter Sets Up The Framework
For Easy Multiplatform Development

B Great Tool For Educational Purposes
® Easier To Generate Programs

" Easier To Learn New Development Environments

" Easier To Learn New Target Platforms

Summary Continued

® Demonstrated Both The Design And
Implementation Of An Entire Project

B Appropriate Languages Were Used (C# For
User Interface, C++ For The Game Teleporter
[tself)

B Create A Study And Analyze The Results

Future Work

B This Project Is Open Source
B Source Is Available Now At

B http://www.tonymorelli.com
® Will Be On Sourceforge

® Plugins Will Be Created By The Experts In
Each Area

® Paper Will Be Presented At FIE 2007

http://www.tonymorelli.com/

Questions/Comments

	Game Teleporter A Development Tool For Everyone
	Outline
	Who Am I?
	UNR Projects
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Motivation
	Overview
	Definitions
	Slide 17
	Slide 18
	Study
	Slide 20
	Study - Video
	Slide 22
	Study - Questions
	Study - Predictions
	Study Results
	Study - Results
	Slide 27
	Slide 28
	Slide 29
	Study - Conclusion
	Similar Projects
	Game Teleporter Benefits
	Software Design
	Input Plugins
	Flash Input Plugin
	Psd Input Plugin
	Custom Game Creation Plugin
	Intermediate File Format
	Intermediate File Format - Sample
	Output Plugins
	Visual Basic.Net Output Plugin
	Slide 42
	PSP Output Plugin
	Slide 44
	QBasic Output Plugin
	Slide 46
	Create Bounce Game Source Code
	Slide 48
	Summary
	Summary Continued
	Future Work
	Questions/Comments

	Widget0: <INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

</INCLUDES>

<DECLARATIONS>

InputButton button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

</DECLARATIONS>

<MAINLOOP>

 GetInput();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

</MAINLOOP>

<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

</FUNCTIONS>

	_2: void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

	1: void MovePlayer()

{

 if (button.Buttons & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button.Buttons & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

	2: Private Sub MovePlayer()

 if (rightPressed = True) Then

 picts(0).left = picts(0).left + moveDelta

End If

 if (leftPressed = True) Then

 picts(0).left = picts(0).left - moveDelta

End If

End Sub

	_3: <INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

</INCLUDES>

<DECLARATIONS>

InputButton button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

</DECLARATIONS>

<MAINLOOP>

 GetInput();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

</MAINLOOP>

<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

</FUNCTIONS>

	1_2: #include <pspdisplay.h>

#include <pspctrl.h>

#include <pspkernel.h>

#include <pspdebug.h>

#include <pspgu.h>

#include <png.h>

#include <stdio.h>

#include "graphics.h"

#define RIGHT PSP_CTRL_RIGHT

#define LEFT PSP_CTRL_LEFT

//<INCLUDES>

#include "Pictures.h"

//picts[0] = my paddle

//picts[1] = ball

//picts[2] = opponent paddle

#define printf pspDebugScreenPrintf

#define MAX(X,Y) ((X)>(Y) ? (X):(Y))

//<DECLARATIONS>

SceCtrlData button;

int ballVertDirection = 1;

int ballHorizDirection = 1;

int moveDelta = 10;

int oppMoveDelta = 10;

void MoveBall();

void MoveOpponent();

void MovePlayer();

void UpdateScreen();

PSP_MODULE_INFO("OutApp",0,1,1);

SceCtrlData ProcessInputs();

void ClearCurrentScreen();

void DisplayImage(struct Picture _pict);

void HideImage(struct Picture _pict);

Image * ourImage[10];

				

//PSP_MODULE_INFO("Image Display Program",0,1,1);

int exit_callback(int arg1, int arg2, void * common)

{

 sceKernelExitGame();

 return 0;

}

int CallbackThread(SceSize args, void * argp)

{

 int cbid;

 cbid = sceKernelCreateCallback("Exit Callback", exit_callback, NULL);

 sceKernelRegisterExitCallback(cbid);

 sceKernelSleepThreadCB();

 return 0;

}

int SetupCallbacks(void)

{

 int thid = 0;

 thid = sceKernelCreateThread("update_thread", CallbackThread,

 0x11, 0xFA0,0,0);

 if (thid >=0)

 {

 sceKernelStartThread(thid,0,0);

 }

 return thid;

}

int main()

{

 int x = 0;	

 pspDebugScreenInit();

 SetupCallbacks();

 initGraphics();

 sceDisplayWaitVblankStart();

 flipScreen();

 for (x = 0; x< TOTAL_PICTURES; x++)

 {

 ourImage[x] = loadImage(picts[x].fileName);

 }

 while (1)

 {

 clearScreen(0xff);

	

//<MAINLOOP>

 button = ProcessInputs();

 MoveBall();

 MoveOpponent();

 MovePlayer();

 UpdateScreen();

//</MAINLOOP>

 sceDisplayWaitVblankStart();

 flipScreen();

 if (button.Buttons & PSP_CTRL_TRIANGLE)

 {

 sceKernelSleepThread();

 return 0;

 break;

 }

 sceKernelDelayThread(10000);

 }

 sceKernelSleepThread();

 return 0;

}

SceCtrlData ProcessInputs()

{

 SceCtrlData pad;

 sceCtrlReadBufferPositive(&pad, 1);

 return pad;

}

void ClearCurrentScreen()

{

 clearScreen(0xff);

 sceDisplayWaitVblankStart();

 flipScreen();

}

void DisplayImage(struct Picture _pict)

{

 char buffer[128];

 int sizeX;

 int sizeY;

 int x = 0;

 int picIndex = 0;

 for (x = 0; x< TOTAL_PICTURES; x++)

 {

 if (strcmp(_pict.fileName, picts[x].fileName) == 0)

 {

 picIndex = x;

 }

 }

 if (0) //if the pic is not already in memory, load it

 {

 sprintf(buffer, "%s", _pict.fileName);

 clearScreen(0xff);

// ourImage = loadImage(buffer);

 }

 sizeX = _pict.right - _pict.left;

 sizeY = _pict.bottom - _pict.top;

 blitAlphaImageToScreen(0,0,sizeX,sizeY,ourImage[picIndex],

 _pict.left,_pict.top);

}

void HideImage(struct Picture _pict)

{

}

//<FUNCTIONS>

void MoveBall()

{

 if (ballVertDirection == 1)

 {

 picts[1].top = picts[1].top + 1;

 picts[1].bottom = picts[1].bottom + 1;

 }

 else

 {

 picts[1].top = picts[1].top - 1;

 picts[1].bottom = picts[1].bottom - 1;

 }

 if (ballHorizDirection == 1)

 {

 picts[1].left = picts[1].left + 1;

 picts[1].right = picts[1].right + 1;

 }

 else

 {

 picts[1].left = picts[1].left - 1;

 picts[1].right = picts[1].right - 1;

 }

 if (picts[1].left > 290)

 {

 ballHorizDirection = 0;

 }

 else if (picts[1].left < 10)

 {

 ballHorizDirection = 1;

 }

 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)

 {

 ballVertDirection = 1;

 }

 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)

 {

 ballVertDirection = 0;

 if (button.Buttons & RIGHT)

 {

 ballHorizDirection = 1;

 }

 else if (button.Buttons & LEFT)

 {

 ballHorizDirection = 0;

 }

 }

 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))

 {

 ballVertDirection = 1;

 picts[1].top = picts[2].top + 15 + 10;

 picts[1].bottom = picts[2].bottom + 15 + 10;

 }

 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))

 {

 ballVertDirection = 0;

 picts[1].top = picts[0].top - 10;

 picts[1].bottom = picts[0].bottom - 10;

 }

}

void MoveOpponent()

{

 if (picts[2].left + 30 > picts[1].left)

 {

 picts[2].left = picts[2].left - oppMoveDelta;

 picts[2].right = picts[2].right - oppMoveDelta;

 }

 if (picts[2].left + 30 < picts[1].left)

 {

 picts[2].left = picts[2].left + oppMoveDelta;

 picts[2].right = picts[2].right + oppMoveDelta;

 }

}

void MovePlayer()

{

 if (button.Buttons & RIGHT)

 {

 picts[0].left = picts[0].left + moveDelta;

 picts[0].right = picts[0].right + moveDelta;

 }

 if (button.Buttons & LEFT)

 {

 picts[0].left = picts[0].left - moveDelta;

 picts[0].right = picts[0].right - moveDelta;

 }

}

void UpdateScreen()

{

 HideImage(picts[0]);

 HideImage(picts[1]);

 HideImage(picts[2]);

 DisplayImage(picts[0]);

 DisplayImage(picts[1]);

 DisplayImage(picts[2]);

}

//</FUNCTIONS>

//</FILE>
	2_2: Public Class Form1

 Inherits System.Windows.Forms.Form

 <System.Runtime.InteropServices.DllImport("user32.dll")> Private Shared _

 Function GetAsyncKeyState(ByVal key As Keys) As Integer

 End Function

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox

 Friend WithEvents PictureBox2 As System.Windows.Forms.PictureBox

 Friend WithEvents PictureBox3 As System.Windows.Forms.PictureBox

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 Dim resources As System.Resources.ResourceManager = New System.Resources.ResourceManager(GetType(Form1))

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(500, 300)

 Me.Name = "Form1"

 Me.Text = "Form1"

 Me.ResumeLayout(False)

 End Sub

#End Region

 Dim upPressed As Boolean = False

 Dim downPressed As Boolean = False

 Dim leftPressed As Boolean = False

 Dim rightPressed As Boolean = False

'<HEADER>

	Dim picts(100) as PictureBox

	Dim TOTAL_PICTURES as Int16 = 3

'<DECLARATIONS>

Dim ballVertDirection as Int16= 1

Dim ballHorizDirection as Int16= 1

Dim moveDelta as Int16= 10

Dim oppMoveDelta as Int16= 10

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

'<INITIALIZE>

	picts(0) = new PictureBox

	picts(0).Image = System.Drawing.Bitmap.FromFile("MyPaddle.png")

	picts(0).Top = 200

	picts(0).Left = 200

	picts(0).Show()

	picts(0).Height = 30

	picts(0).Width = 60

	Controls.Add(picts(0))

	picts(1) = new PictureBox

	picts(1).Image = System.Drawing.Bitmap.FromFile("ball.png")

	picts(1).Top = 100

	picts(1).Left = 200

	picts(1).Show()

	picts(1).Height = 5

	picts(1).Width = 5

	Controls.Add(picts(1))

	picts(2) = new PictureBox

	picts(2).Image = System.Drawing.Bitmap.FromFile("YourPaddle.png")

	picts(2).Top = 0

	picts(2).Left = 200

	picts(2).Show()

	picts(2).Height = 30

	picts(2).Width = 60

	Controls.Add(picts(2))

'</INITIALIZE>

' moveDelta = 5

' oppMoveDelta = 1

 Debug.WriteLine("Starting up")

 MyBase.KeyPreview = True

 MyBase.Show()

 Dim count As Int16 = 0

 While 1

 Application.DoEvents()

 count = count + 1

 If (count = 15000) Then

 count = 0

'<MAINLOOP>

ProcessInputs()

 MoveBall()

 MoveOpponent()

 MovePlayer()

 UpdateScreen()

'</MAINLOOP>

 End If

 End While

 End Sub

 Private Sub FormClosing(ByVal sender As System.Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 Application.Exit()

 End

 End Sub

 Private Sub ProcessInputs()

 upPressed = False

 downPressed = False

 leftPressed = False

 rightPressed = False

 If (GetAsyncKeyState(Keys.Up) <> 0) Then

 upPressed = True

 End If

 If (GetAsyncKeyState(Keys.Down) <> 0) Then

 downPressed = True

 End If

 If (GetAsyncKeyState(Keys.Left) <> 0) Then

 leftPressed = True

 End If

 If (GetAsyncKeyState(Keys.Right) <> 0) Then

 rightPressed = True

 End If

 End Sub

 Private Sub ClearScreen()

 Dim x As Int16

 For x = 0 To TOTAL_PICTURES - 1

 picts(x).Hide()

 Next

 End Sub

 Private Sub DisplayImage(ByVal _image As PictureBox)

 _image.Show()

 End Sub

 Private Sub HideImage(ByVal _image As PictureBox)

 _image.Hide()

 End Sub

'<FUNCTIONS>

Private Sub MoveBall()

 if (ballVertDirection = 1) Then

 picts(1).top = picts(1).top + 1

 Else

 picts(1).top = picts(1).top - 1

End If

 if (ballHorizDirection = 1) Then

 picts(1).left = picts(1).left + 1

 Else

 picts(1).left = picts(1).left - 1

End If

 if (picts(1).left > 290) Then

 ballHorizDirection = 0

 Else If (picts(1).left < 10)

 ballHorizDirection = 1

End If

 if (picts(1).top < picts(2).top + 15 and picts(1).left > picts(2).left and picts(1).left < picts(2).left + 60) Then

 ballVertDirection = 1

 Else If (picts(1).top > picts(0).top and picts(1).left > picts(0).left and picts(1).left < picts(0).left + 60)

 ballVertDirection = 0

 if (rightPressed = True) Then

 ballHorizDirection = 1

 Else If (leftPressed = True)

 ballHorizDirection = 0

End If

 Else If(picts(1).top > picts(0).top and (picts(1).left < picts(0).left or picts(1).left > picts(0).left + 60))

 ballVertDirection = 1

 picts(1).top = picts(2).top + 15 + 10

 Else If (picts(1).top < picts(2).top and (picts(1).left < picts(2).left or picts(1).left > picts(2).left + 60))

 ballVertDirection = 0

 picts(1).top = picts(0).top - 10

End If

End Sub

Private Sub MoveOpponent()

 if (picts(2).left + 30 > picts(1).left) Then

 picts(2).left = picts(2).left - oppMoveDelta

End If

 if (picts(2).left + 30 < picts(1).left) Then

 picts(2).left = picts(2).left + oppMoveDelta

End If

End Sub

Private Sub MovePlayer()

 if (rightPressed = True) Then

 picts(0).left = picts(0).left + moveDelta

End If

 if (leftPressed = True) Then

 picts(0).left = picts(0).left - moveDelta

End If

End Sub

Private Sub UpdateScreen()

 HideImage(picts(0))

 HideImage(picts(1))

 HideImage(picts(2))

 DisplayImage(picts(0))

 DisplayImage(picts(1))

 DisplayImage(picts(2))

End Sub

'</FUNCTIONS>

End Class

'</FILE>

